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ABSTRACT Data on the epidemiology of invasive candidiasis (IC) and the antifungal
susceptibility of Candida isolates in China are still limited. Here we report on surveil-
lance for IC from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET)
study. Sixty-five tertiary hospitals collected 8,829 Candida isolates from 1 August
2009 to 31 July 2014. Matrix-assisted laser desorption ionization–time of flight mass
spectrometry supplemented by ribosomal DNA sequencing was used to define the
species, and the fluconazole and voriconazole susceptibilities were determined by
the Clinical and Laboratory Standards Institute disk diffusion method. A total of 32
Candida species were identified. Candida albicans was the most common species
(44.9%), followed by the C. parapsilosis complex (20.0%), C. tropicalis (17.2%), and the
C. glabrata complex (10.8%), with other species comprising �3% of isolates. How-
ever, in candidemia, the proportion of cases caused by C. albicans was only 32.3%.
C. albicans and C. parapsilosis complex isolates were susceptible to fluconazole and
voriconazole (�6% resistance), while fluconazole and azole cross-resistance rates
were high in C. tropicalis (13.3% and 12.9%, respectively), C. glabrata complex (18.7%
and 14%, respectively), and uncommon Candida species (44.1% and 10.3%, respec-
tively) isolates. Moreover, from years 1 to 5 of the study, there was a significant in-
crease in the rates of resistance to fluconazole among C. glabrata complex isolates
(12.2% to 24.0%) and to both fluconazole (5.7% to 21.0%) and voriconazole (5.7% to
21.4%) among C. tropicalis isolates (P � 0.01 for all comparisons). Geographic varia-
tions in the causative species and susceptibilities were noted. Our findings indicate
that antifungal resistance has become noteworthy in China, and enhanced surveil-
lance is warranted.
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Invasive candidiasis (IC) is a life-threatening disease with high rates of morbidity and
mortality, especially among immunocompromised and critically ill patients (1, 2).

Worldwide, Candida albicans remains the predominant pathogen causing IC, but the
prevalence of infection due to non-albicans Candida species is on the rise, with
non-albicans Candida species accounting for over 50% of cases of IC in many geo-
graphic regions (1, 3). Of note, non-albicans Candida species are often more resistant to
antifungal drugs than C. albicans (2, 4), which is concerning with respect to clinical
outcomes.

Early and appropriate therapy in IC is essential to improve the overall outcomes
(5–7). However, initiation of such targeted antifungal therapy is contingent on the
timely diagnosis of IC. Because rapid IC diagnostic assays, such as molecular-based
tests, have not yet reached the bedside in many hospitals, most clinicians still rely on
insensitive culture-based methods to direct patient management (1, 7). Robust local
epidemiological data, including knowledge of antifungal susceptibility profiles and
trends, are therefore essential for the selection of initial antifungal therapy (1–4). This
hinges upon effective surveillance networks.

The China Hospital Invasive Fungal Surveillance Net (CHIF-NET) study was the first
and has continued to be the largest national surveillance program for invasive fungal
infections, including IC, in mainland China. Initiated in 2009 (8), over 8,000 isolates were
collected during the first to fifth surveillance years. We have previously reported results
from limited surveillance or on the epidemiology relevant to selected species (9–14) but
not the overall results from the entire CHIF-NET study. Here we provide a perspective
on the overall comparative species distribution of Candida pathogens and azole
antifungal susceptibility data for Candida isolates collected during the first 5 years of
the study.

MATERIALS AND METHODS
The CHIF-NET study. The CHIF-NET study is a prospective, laboratory-based, multicenter study of

invasive yeast infections, including IC, initiated in 2009 (as described above). Each surveillance year
began on 1 August of the year and continued to 31 July of the following year. Sixty-five tertiary general
hospitals from 27 provinces in China participated in the first 5 years (Fig. 1). The number of participating
hospitals increased from 12 in the first year to 22, 22, 48, and 61 in the second to fifth years, respectively.

The study inclusion criteria were as previously described (8). In each surveillance year, all Candida
isolates from eligible patients with IC were forwarded to the central laboratory, Department of Clinical
Laboratory, Peking Union Medical College Hospital, for species confirmatory identification and antifungal
susceptibility testing. The study was approved by the Human Research Ethics Committee of the Peking
Union Medical College Hospital (S-263).

Species identification. To ensure the accuracy of identification, all invasive Candida isolates were
identified to the species level in the central laboratory. In year 1 of the study, isolates were identified by
DNA sequencing of the fungal ribosomal DNA internal transcribed spacer (ITS) regions (8), and isolates
from years 2 to 5 were identified by a combination of matrix-assisted laser desorption ionization–time of
flight mass spectrometry (MALDI-TOF MS), using a Vitek MS system (bioMérieux, Marcy l’Étoile, France),
supplemented by ITS sequencing (15).

Antifungal susceptibility testing. Susceptibility to fluconazole and voriconazole was determined
using the Clinical and Laboratory Standards Institute (CLSI) M44-A2 disk diffusion method (16). For all
isolates from all years, species-specific MIC clinical breakpoint (CBP) interpretive criteria were applied to
C. albicans, Candida tropicalis, the Candida parapsilosis complex, the Candida glabrata complex, and
Candida krusei according to the guidelines in the reference CLSI M60 document (17), while the
susceptibilities of the other Candida species were interpreted in accordance with the CLSI M44-S3
document guidelines (18). The quality control strains were C. albicans ATCC 90028, Candida parapsilosis
ATCC 22019, and Candida krusei ATCC 6258.

Statistical analysis. All comparisons were performed using SPSS software (version 12.0; SPSS Inc.,
Chicago, IL, USA). Comparisons of continuous variables were performed by using the Mann-Whitney test,
and comparisons of categorical variables were performed by using a chi-square test or Fisher’s exact test,
as appropriate. A P value of 0.05 was significant.

RESULTS
Demographics. A total of 8,829 nonrepetitive (i.e., nonduplicate) Candida isolates

from separate patients were collected; 37.8% of the isolates were cultured from male
patients, and 62.2% of the isolates were cultured from female patients. The patients’
ages ranged from 0 to 103 years (median, 50 years; interquartile range, 45 to 72 years).
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Candida species. Thirty-two species of Candida were identified among the 8,829
isolates. C. albicans was the most common (3,965 isolates, 44.9%), with no significant
trend in frequency being observed over the 5 years (P � 0.05) (Table 1). Non-albicans
Candida species accounted for 4,864 (55.1%) isolates (Table 1). Of these, C. parapsilosis
complex isolates were the most frequent 1,762 (20.0%) and consisted of C. parapsilosis
sensu stricto (1,526/8,829 isolates, 17.3%), Candida metapsilosis (1.9%), and Candida
orthopsilosis and Lodderomyces elongisporus (0.4% each; Table 1). C. tropicalis was the
third most common species (1,515 isolates, 17.2%), followed by the C. glabrata complex
(955 isolates, 10.8%); of the latter, 98.5% were C. glabrata sensu stricto isolates (n � 941),
while Candida nivariensis and Candida bracarensis were rare (0.1% and �0.1%, respec-
tively; Table 1). Other species were rare (�2.1%; Table 1). No significant trends in
frequency were seen for non-albicans Candida species (P � 0.05 for all comparisons).

Species distribution according to specimen type. Of the various specimen types,
over 40% of invasive Candida isolates (3,858/8,829 isolates, 43.7%) were recovered from
blood, followed by ascitic fluid (20.8%), pus (10.4%), central venous catheter tips (CVC;
8.0%), bile (4.6%), bronchoalveolar lavage fluid (4.1%), pleural fluid (3.9%), cerebrospi-
nal fluid (1.8%), and tissue (1.4%) (Fig. 2).

The proportion of non-albicans Candida isolates recovered from blood cultures
(2,612/3,858 isolates, 67.7%) was significantly higher than that recovered from other
specimen types (2,252/2,719 isolates, 45.3%) (P � 0.01) (Fig. 2). More specifically, the
difference in the relative proportion was the largest for C. parapsilosis complex isolates

FIG 1 Geographic regions of the CHIF-NET study covered (27 provinces, in dark gray). The first number in parentheses under the
province name indicates the number of hospitals that participated in the CHIF-NET study in each province, and the second number
indicates the number of isolates collected.
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(25.2% versus 13.0%, P � 0.01) (Fig. 2). The frequency between blood source and
non-blood source isolates was similar for C. tropicalis (28.9% versus 16.9%, P � 0.05) and
the C. glabrata complex (11.5% versus 10.3%, P � 0.05). In addition, over the 5 years of
the study, the C. parapsilosis complex was recovered at a higher frequency than C.
albicans and became the most predominant species among isolates causing candi-
demia in years 1 and 4. Significantly higher proportions of C. parapsilosis complex
isolates were also observed in CVC (29.6%) and peritoneal dialysate (50.9%) specimens
compared with this species’ average frequency (20%) (P � 0.01 for both comparisons)
(Fig. 2). Of the uncommon Candida species, some were found in higher proportions in
blood culture specimens than in non-blood culture specimens, e.g., Candida guillier-
mondii (3.1% versus 1.3%, P � 0.01), Candida pelliculosa (2.7% versus 0.4%, P � 0.01),
and Candida lipolytica (0.8% versus 0.1%, P � 0.01).

Species distribution by patient location and geographic regions. Of the Candida
isolates recovered, 93.5% were from hospital inpatients (including those in intensive
care units [ICUs] [31.4%], medical wards [20.4%], and surgical wards [32.9%]) and 6.5%
were from patients in outpatient/emergency settings (Fig. 2). In all cases, C. albicans
was the predominant species (39.7% to 49.3%). The second and third most common
species in different clinical settings were either the C. parapsilosis complex or C.
tropicalis (13.3% to 28.2%). The C. glabrata complex was the fourth most common

TABLE 1 Species distribution of Candida isolates over 5 years

Candida species

Overall Yr 1 Yr 2 Yr 3 Yr 4 Yr 5

No. % No. % No. % No. % No. % No. %

Candida albicans 3,965 44.9 284 38.6 556 48.9 704 47.4 1,051 43 1,370 45.3

C. parapsilosis complex 1,762 20 172 23.4 184 16.2 241 16.2 538 22 627 20.7
C. parapsilosis sensu stricto 1,526 17.3 142 19.3 161 14.2 202 13.6 460 18.8 561 18.5
C. metapsilosis 167 1.9 23 3.1 14 1.2 25 1.7 54 2.2 51 1.7
C. orthopsilosis 35 0.4 4 0.5 7 0.6 6 0.4 12 0.5 6 0.2
Lodderomyces elongisporus 34 0.4 3 0.4 2 0.2 8 0.5 12 0.5 9 0.3

C. tropicalis 1,515 17.2 122 16.6 218 19.2 267 18 413 16.9 495 16.4

C. glabrata complex 955 10.8 90 12.2 115 10.1 178 12 260 10.6 312 10.3
C. glabrata sensu stricto 941 10.7 88 12 115 10.1 176 11.8 254 10.4 308 10.2
C. nivariensis 13 0.1 2 0.3 1 �0.1 6 0.2 4 0.1
C. bracarensis 1 �0.1 1 �0.1

C. guilliermondii 186 2.1 12 1.6 16 1.4 20 1.3 53 2.2 85 2.8
C. krusei 125 1.4 18 2.4 16 1.4 24 1.6 25 1 42 1.4
C. pelliculosa 123 1.4 13 1.8 10 0.9 12 0.8 39 1.6 47 1.6
C. lusitaniae 50 0.6 6 0.8 4 0.4 18 1.2 12 0.5 10 0.3
C. lipolytica 36 0.4 9 1.2 3 0.3 5 0.3 10 0.4 9 0.3
C. haemulonii 24 0.3 1 0.1 3 0.3 6 0.4 10 0.4 4 0.1
C. intermedia 20 0.2 3 0.3 3 0.2 12 0.5 2 �0.1
C. norvegensis 13 0.1 1 0.1 3 0.2 6 0.2 3 0.1
C. fabianii 11 0.1 1 0.1 3 0.2 7 0.3
C. inconspicua 8 �0.1 2 0.2 3 0.1 3 0.1
C. rugosa 7 �0.1 1 �0.1 1 �0.1 1 �0.1 4 0.1
C. fermentati 6 �0.1 2 0.2 2 �0.1 2 �0.1
C. quercitrusa 4 �0.1 3 0.4 1 �0.1
C. catenulata 4 �0.1 2 0.3 1 �0.1 1 �0.1
C. aaseri 3 �0.1 3 0.1
C. famata 3 �0.1 1 0.1 1 �0.1 1 �0.1
C. kefyr 3 �0.1 1 0.1 2 �0.1
C. opuntiae 1 �0.1 1 �0.1
C. freyschussii 1 �0.1 1 �0.1
C. magnoliae 1 �0.1 1 �0.1
C. palmioleophila 1 �0.1 1 �0.1
C. utilis 1 �0.1 1 �0.1
C. diddensiae 1 �0.1 1 �0.1

Total 8,829 100 736 100 1,137 100 1,486 100 2,444 100 3,026 100
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species in all clinical settings (prevalence, 8.9% to 12.3%). Other Candida species were
rare (�4%; Fig. 2).

Geographic variation in the species distribution was observed. For instance, C.
albicans was most common in 57 of 65 (87.7%) hospitals, but its frequency varied
widely from 12.5% to 100% in different hospitals. In the eight hospitals where

FIG 2 Distribution of Candida pathogens by specimen type (A) and clinical service (B). Abbreviations: BALF, bronchoalveolar lavage fluid; CSF, cerebrospinal
fluid; CVC, central venous catheter.

Invasive Candidiasis in China over 5 Years Journal of Clinical Microbiology

July 2018 Volume 56 Issue 7 e00577-18 jcm.asm.org 5

http://jcm.asm.org


C. albicans was not the dominant species, the most common species were the C.
parapsilosis complex, C. tropicalis, and C. pelliculosa in four hospitals, three hospitals and
one hospital, respectively.

In vitro susceptibilities. Of 8,829 Candida isolates, 80.0%, 11.2%, and 8.8% of the
isolates were susceptible, susceptible dose-dependent (SDD), and resistant to fluconazole,
respectively (Table 2). In comparison, 94.0% of isolates were susceptible to voriconazole or
of the wild-type (WT) phenotype, 0.6% were SDD or intermediate, and 5.4% were resistant
or non-wild-type (NWT) (Table 2). Cross-resistance occurred in 5.2% (457/8,829) of the
isolates (Table 2), and 59.0% (457/774) of fluconazole-resistant isolates were azole cross-
resistant. Across the different hospitals, the fluconazole and voriconazole susceptibility rates
ranged from 50% to 100% and 43% to 100%, respectively.

Among the common Candida species, �99% of C. albicans isolates were susceptible
to both fluconazole and voriconazole (Table 2), as were C. parapsilosis complex isolates.
However, within the C. parapsilosis complex, 13.8% of the C. metapsilosis isolates were
fluconazole resistant, whereas the rate was 4.0% among C. parapsilosis sensu stricto
isolates (P � 0.01); C. orthopsilosis isolates also had a high frequency of resistance to
both fluconazole (28.6% versus 4.0% for C. parapsilosis sensu stricto isolates, P � 0.01)

TABLE 2 In vitro susceptibilities of Candida spp. to fluconazole and voriconazole as determined by CLSI disk diffusion method

Species

Fluconazolea Voriconazolea

Cross-resistantS R S/WT R/NWT

No. % No. % No. % No. % No. %

C. albicans 3,927 99.0 20 0.5 3,928 99.1 30 0.8 19 0.5
C. parapsilosis complex 1,600 90.8 94 5.3 1,710 97.0 44 2.5 44 2.5

C. parapsilosis sensu
stricto

1,425 93.4 61 4.0 1,485 97.3 34 2.2 34 2.2

C. metapsilosis 117 70.1 23 13.8 166 99.4 1 0.6 1 0.6
C. orthopsilosis 24 68.6 10 28.6 25 71.4 9 25.7 9 25.7
L. elongisporus 34 100 34 100

C. tropicalis 1,285 84.8 202 13.3 1,295 85.5 200 13.2 195 12.9
C. glabrata complex 179 18.7 814 85.2 141 14.8 134 14.0

C. glabrata sensu stricto 179 19.0 800 85.0 141 15.0 134 14.2
C. nivariensis 13 100
C. bracarensis 1 100

C. guilliermondii 71 38.2 54 29.0 157 84.4 23 12.4 23 12.4
C. krusei 125 100 118 94.4 4 3.2 4 0.3
C. pelliculosa 68 55.3 24 19.5 102 82.9 12 9.8 12 9.8
C. lusitaniae 48 96.0 50 100
C. lipolytica 6 16.7 25 69.4 24 66.7 12 33.3 12 33.3
C. haemulonii 5 20.8 18 75.0 15 62.5 9 37.5 9 37.5
C. intermedia 18 90.0 2 10.0 20 100
C. norvegensis 3 23.1 7 53.8 13 100
C. fabianii 11 100 11 100
C. inconspicua 1 12.5 7 87.5 8 100
C. rugosa 3 42.9 4 57.1 7 100
C. fermentati 4 66.7 2 33.3 6 100
C. catenulata 3 75.0 1 25.0 3 75.0 3 75.0
C. quercitrusa 3 75.0 4 100
C. aaseri 2 66.7 3 100
C. kefyr 3 100 3 100
C. famata 2 66.7 1 33.3 3 100
C. magnoliae 1 100 1 100
C. utilis 1 100 1 100
C. diddensiae 1 100 1 100 1 100
C. palmioleophila 1 100 1 100 1 100
C. opuntiae 1 100 1 100
C. freyschussii 1 100 1 100

Total 7,059 80.0 774 8.8 8,296 94.0 480 5.4 457 5.2
aSpecies-specific MIC clinical breakpoint (CBP) interpretive criteria were applied to C. albicans, Candida tropicalis, the C. parapsilosis complex, the Candida glabrata
complex, and Candida krusei according to the guidelines in the reference CLSI M60 document (17), and the susceptibilities of the other Candida species were
interpreted in accordance with CLSI M44-S3 document guidelines (18). S, susceptible; WT, wild type; R, resistant; NWT, non-wild type.
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and voriconazole (25.7% versus 2.2% for C. parapsilosis sensu stricto isolates, P � 0.01).
Other species that accounted for �2% of the collection, including C. tropicalis, the C.
glabrata complex, and C. guilliermondii, had higher rates of fluconazole resistance
(�13%), voriconazole resistance (�12%), and azole cross-resistance (�12%) than C.
albicans and the C. parapsilosis complex (Table 2). For C. krusei, 94.4% of isolates were
susceptible to voriconazole (Table 2). The overall fluconazole resistance rate for other
rare Candida species reached up to 31.2% (100/321), and the voriconazole resistance
rate was 11.8% (38/321).

Trends of fluconazole and voriconazole resistance over 5 years. Over the 5-year
study period, the overall fluconazole susceptibility rates were 81.0%, 85.0%, 81.2%,
78.1%, and 78.7%, respectively, and the voriconazole susceptibility/WT rates were
94.2%, 96.5%, 95.0%, 93.4%, and 92.9% respectively. C. albicans remained highly
susceptible to both azoles over 5 years (susceptibility rate � 98%) (Fig. 3). The
fluconazole susceptibility rate of C. parapsilosis complex isolates significantly decreased
from 98.8% in the first year to 86.2% in the fourth year (P � 0.01), although it climbed
back to 90.6% in the fifth year (Fig. 3A), while in contrast, the rates of susceptibility to
voriconazole remained similar (�95.0% of isolates were susceptible; Fig. 3B). Similar
trends were found for the C. glabrata complex (the fluconazole resistance rate in-
creased from 12.2% to 24.0%, P � 0.01) (Fig. 3A), but the proportion of isolates WT for
susceptibility to voriconazole remained at 82.2% to 88.8% (Fig. 3B).

However, the susceptibility of C. tropicalis to both fluconazole and voriconazole de-
creased continuously, from 94.3% (for both azoles) in year 1 to 76.2% and 76.8%, respec-
tively, in year 5 (P � 0.01 for both comparisons) (Fig. 2A and B). In addition, the fluconazole
susceptibility rate of C. guilliermondii dropped from 100% to 37.6% (P � 0.01) (Fig. 3A), and
its voriconazole susceptibility rate decreased from 100% to 89.4% (P � 0.01) (Fig. 3B). C.
pelliculosa and other rare Candida species exhibited generally high rates of resistance to
fluconazole and voriconazole, but no significant trends were observed (Fig. 3).

DISCUSSION

This large study has provided valuable data to inform the management of IC in
Chinese hospitals. As expected, the four major Candia pathogens, C. albicans, the C.
parapsilosis complex, C. tropicalis, and the C. glabrata complex, accounted for 92.9% of
isolates and predominated in all hospitals except one. Generally, C. albicans remained
the most common species, and no trends toward a decrease in frequency were
observed over the 5 years. In addition, the species was susceptible to both fluconazole
and voriconazole, which was comparable to global data obtained during the same time
period (�99% susceptibility rates) (3, 19–21). C. albicans accounted for 44.9% of the
isolates collected in this study, which is similar to the prevalence in North America, Latin
America, and other regions in the Asia-Pacific region (40% to 45%) but lower than that
in Europe (�50%) (20–22). Of note, the prevalence of C. albicans in the Asia-Pacific
region has decreased by about 20% compared with that determined from data
obtained from 2001 to 2007 (23). The proportion of C. albicans isolates as the causative
agent among candidemia cases was even lower (32.3%).

On the other hand, the overall frequency of non-albicans Candida species as a cause of
IC was high in China, with the members of the C. parapsilosis complex being the second
most predominant species in this study (20%). Of note, this frequency was even higher than
that of C. albicans among candidemia patients in year 1 (8) and year 4. C. parapsilosis
complex isolates are notable for their ability to adhere to catheters and other medical
devices, to develop biofilms, and to colonize human skin, all of which may facilitate
nosocomial outbreaks (1, 12, 24). A reassuring finding was that azole resistance (�6%) was
uncommon in the present study, similar to global surveillance data (0 to 5.4%) (3, 19, 21).
However, differences in azole resistance rates were noted among the different species
within the C. parapsilosis complex, with C. metapsilosis and C. orthopsilosis showing the
highest rates of resistance, as has been reported in previous studies (25, 26).

C. tropicalis was the third most common species in the study (17.2%). Of note, this
species has become one of the more common non-albicans Candida species worldwide,
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FIG 3 Trends of fluconazole (A) and voriconazole (B) susceptibility and resistance rates of Candida species determined through the
CHIF-NET study (2010 to 2014).

Xiao et al. Journal of Clinical Microbiology

July 2018 Volume 56 Issue 7 e00577-18 jcm.asm.org 8

http://jcm.asm.org


and its prevalence in Latin America (13% to 18%) and the Asia-Pacific region (about
12%) is generally higher than that in North America (7% to 9%) and Europe (4% to 9%)
(20, 23). There is a general consensus that C. tropicalis strains may exhibit a moderate
level of azole resistance. Resistance rates have remained stable in North America and
Europe (generally, �10%) (20, 21, 27). However, in the present study, a notable trend
of increasing rates of azole resistance among C. tropicalis isolates was observed in China
(�6% in year 1 to �20% in year 5). This was also observed using data obtained by the
broth microdilution method from 10 hospitals which consistently participated in the
CHIF-NET study over the 5-year period (13). In addition, a higher azole cross-resistance
rate was observed in C. tropicalis isolates (96.5%) than in C. parapsilosis complex (46.8%)
and C. glabrata complex (74.9%) isolates. Worldwide, azole resistance in C. tropicalis has
been mainly noted in the Asia-Pacific region (3, 13, 28), whereas azole resistance rates
among C. tropicalis isolates in North America or European countries remain low (�10%)
(3, 23, 29). As C. tropicalis infection is associated with higher rates of mortality and more
adverse outcomes (30), consideration may be given to the use of echinocandins as
first-line agents in treating C. tropicalis infections in China.

C. glabrata complex isolates accounted for 10.8% of the collection in the present study,
similar to the situation in Europe (10% to 16%) but less than that in the United States, where
C. glabrata was the most common non-albicans Candida species (20% to 26%) (20, 21, 23).
This species is well-known for its high rates of azole resistance, mainly due to the upregu-
lation of drug transporters and the overexpression or alteration of the drug target (2, 4). In
this study, the rate of fluconazole resistance among the isolates was 18.7%, which is a rate
higher than the global average (8% to 16%) (3, 20, 21, 23). Moreover, 14.0% of isolates were
cross-resistant to both fluconazole and voriconazole. A significant increase in the rate of
fluconazole resistance in C. glabrata complex isolates was observed over the 5 years of this
study, and this has also been noted using broth microdilution methods in hospitals which
consistently participated in the CHIF-NET study (14).

Other Candida species, although uncommon, exhibited high fluconazole (44.1%)
and voriconazole (10.3%) resistance rates. In addition, many of the less common species
that were highly resistant to fluconazole, e.g., C. pelliculosa and C. lipolytica, were more
commonly isolated from blood samples than non-blood sources. However, less com-
mon Candida species were more likely to be misidentified by phenotypic and
biochemical-based identification methods (8, 15, 31). Although MALDI-TOF MS has
good accuracy, its capacity to identify an ever expanding range of pathogens largely
relies on its protein mass spectral database (15, 32, 33). The CHIF-NET study has also
provided a valuable isolate repository including more novel or uncommon species that
may be used to expand and build local MALDI-TOF MS identification databases (11, 31,
34) for future surveillance.

There were several limitations in our study. First, the study employed the CLSI
disk diffusion assay for antifungal susceptibility testing. The methodology was
developed and verified in the 10.5-year ARTEMIS global surveillance program, and
the results of that methodology showed a good correlation with those of the “gold
standard” broth microdilution method (9, 23). However, to date, azole species-
specific CBPs of the disk diffusion method are available only for the most common
Candida species, i.e., C. albicans, C. parapsilosis, C. tropicalis, C. glabrata, and C. krusei
(17), and the use of old non-species-specific CBPs (18) for other Candida species
may introduce incorrect interpretations of the isolates’ susceptibilities. Building up
epidemiological cutoff values for less common Candida species in China is the
next-step goal of the program. In addition, the antifungal agents tested in the
present study were limited to only two azoles. However, with the increasing
prevalence of azole-resistant Candida isolates, echinocandins have become the first-line
treatment of IC (4, 14, 24). In mainland China, echinocandin-nonsusceptible C. glabrata
cases have also been identified (9, 14). To address these limitations, we envisage perform-
ing broth microdilution to examine the susceptibilities to a broader range of antifungal
agents for the next 5 years of the CHIF-NET surveillance study (year 6 to year 10). Moreover,
further investigations on antifungal resistance mechanisms, e.g., mutations in the ERG11
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and FKS genes and overexpression of drug efflux pumps (2, 4, 29), would enhance
the value of the in vitro susceptibility results. Another potential limitation is that
there were disparities between the numbers of isolates collected from different
provinces, which may influence the accurate geographic picture of the species
distribution or antifungal resistance. In order to obtain more representative re-
gional IC data with less bias, the CHIF-NET Study Group has now established
subsidiary surveillance programs in each province of China (35).

In conclusion, this study has provided useful data on the epidemiology of IC in
mainland China. Although C. albicans remained the most common species, non-
albicans Candida species were responsible for about 55% of cases of IC and over 67%
of candidemia cases. Fluconazole and azole cross-resistance rates were notably high in
C. tropicalis and C. glabrata, and their fluconazole resistance rates increased significantly
over the 5 years. Less common Candida species also exhibited high fluconazole
resistance rates, and molecular or mass spectrum methods were essential for the
identification of uncommon species. Antifungal resistance has become a threat, and
continued surveillance is still warranted.
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